GUIDELINES FOR STUDENTS INDEPENDENT WORK IN THE PRACTICAL CLASSES PREPARING

<table>
<thead>
<tr>
<th>Academic discipline</th>
<th>Internal medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module</td>
<td>Basics of Internal Medicine</td>
</tr>
<tr>
<td>Content module</td>
<td>Fundamentals of diagnostics, treatment and prevention of gastroenterological diseases</td>
</tr>
<tr>
<td>Study subject</td>
<td>Chronic hepatitis.</td>
</tr>
<tr>
<td>Course</td>
<td>IV</td>
</tr>
<tr>
<td>Faculty</td>
<td>of foreign students training</td>
</tr>
</tbody>
</table>

Poltava 2016.
1. **Relevance of the topic**: Chronic hepatitis represents a series of liver disorders of varying causes and severity in which hepatic inflammation and necrosis continue for at least 6 months. Milder forms are nonprogressive or only slowly progressive, while more severe forms may be associated with scarring and architectural reorganization, which, when advanced, lead ultimately to cirrhosis. Finally, clinical and laboratory features of chronic hepatitis are observed occasionally in patients with such hereditary/metabolic disorders as Wilson’s disease (copper overload), α1 antitrypsin deficiency, and nonalcoholic fatty liver disease and even occasionally in patients with alcoholic liver injury. Although all types of chronic hepatitis share certain clinical, laboratory, and histopathologic features, chronic viral and chronic autoimmune hepatitis are sufficiently distinct to merit separate discussions.

2. **The main goal**: To be able to assess the typical clinical picture of chronic hepatitis, to determine tactics of treatment and prophylaxis.

 Specific goals:
 - To select the information indicating the presence of chronic hepatitis in a patient from the data history;
 - To create a scheme of diagnostic search;
 - To identify the signs of chronic hepatitis in an objective study of the patient (general examination, palpation, percussion, auscultation);
 - To analyze and interpret the changes in the results of the laboratory and instrumental methods of investigation, depending on the course of the disease;
 - To formulate and justify a preliminary diagnosis of chronic hepatitis according to classification;
 - To conduct differential diagnostics of diseases with the similar clinical picture;
 - To develop a strategy of treatment depending on the disease and the existing complications;
 - To provide medical care;
 - To assess the patient's prognosis and to propose a plan of preventive actions;
 - To apply deontological communication skills with patients.

3. **Basic knowledge, abilities, skills (interdisciplinary integration)**

<table>
<thead>
<tr>
<th>Discipline</th>
<th>To know</th>
<th>To be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy</td>
<td>The structure of the gastrointestinal tract, liver, blood supply, innervation</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td>The structure of liver in health and disease</td>
<td>To interpret results of liver biopsy</td>
</tr>
<tr>
<td>Regional anatomy</td>
<td>Interposition of the gastrointestinal organs</td>
<td></td>
</tr>
<tr>
<td>Physiology</td>
<td>Indicators of gastrointestinal tract function, its value</td>
<td>To determine the function of gastrointestinal organs</td>
</tr>
<tr>
<td>Morbid anatomy</td>
<td>Changes in the structure of liver in chronic hepatitis</td>
<td></td>
</tr>
<tr>
<td>Propaedeutic therapy</td>
<td>Symptomatology of chronic hepatitis and complications</td>
<td>Conduct an objective examination of the patient, analyze the clinical and laboratory results</td>
</tr>
</tbody>
</table>
4. Do the tasks for independent work during preparation for classes.

4.1. The list of key terms, parameters, characteristics:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic hepatitis</td>
<td>are liver disorders of varying causes and severity in which hepatic inflammation and necrosis continue for at least 6 months.</td>
</tr>
<tr>
<td>Syndrome of cytolysis</td>
<td>complex of symptoms that includes clinical signs and elevated liver intracellular enzymes (AST, ALT, GDG, LDG) in blood that indicates on necrosis.</td>
</tr>
<tr>
<td>Syndrome of cholestasis</td>
<td>complex of symptoms that includes jaundice, skin itching, dark urine, light-colored stool and elevated GGTP, alkaline phosphatase, cholesterol, direct and total bilirubin in blood serum.</td>
</tr>
<tr>
<td>Hepatoprotective drugs (hepatoprotectors)</td>
<td>group of drugs with ability to prevent damage to the liver and have regenerating effect on the liver cells (e.g. S-adenosyl methionine, herbal medications, vitamins, glutathione, beta carotene, N-acetylcysteine).</td>
</tr>
<tr>
<td>Steatosis</td>
<td>is the accumulation of triglycerides in hepatocytes.</td>
</tr>
</tbody>
</table>

4.2. Theoretical questions for the lesson:
1. Give the definitions of chronic hepatitis.
2. Specify the risk factors for chronic hepatitis.
3. The pathophysiological mechanisms of chronic hepatitis according to etiology.
4. Diagnostic criteria of chronic hepatitis according to etiology.
5. What are the laboratory characteristics of chronic hepatitis and its stages?
7. Specify the principles and features of chronic hepatitis pharmacotherapy according to etiology and modern recommendations.
8. What lifestyle modifications should be recommended for patients with chronic hepatitis?

4.3. Practical tasks that are performed in class:
1. What laboratory test can give the most precise characteristic of cytolysis degree?
 1) Transaminase test
 2) Weltman’s coagulation test
 3) Takata-Ara test
 4) Prothrombin test
5) Test for whole protein
 2. What preparations will be the most effective in viral hepatitis?
 1) Antibiotics
 2) Glucocorticoids
 3) Hepatoprotectors
 4) Alpha-interferon
 5) Lactulose

3. What method of diagnostics will be the most informative in detecting the etiology of hepatitis?
 1) Proteinogram
 2) Markers of viral hepatitis
 3) Violation of cellular immunity
 4) Activity of cytolysis (AST, ALT)

5) Puncture biopsy of liver
 4. What is the most effective treatment of autoimmune hepatitis?
 1) Antibacterial preparations
 2) Glucocorticoids, cytostatic preparations
 3) Hepatoprotector preparations
 4) Antiviral preparations
 5) Hemosorption, vitaminotherapia

5. Presence of the antibodies to smooth muscle cells may indicate on:
 1) Autoimmune hepatitis
 2) Primary biliary cirrhosis
 3) Gilbert’s syndrome
 4) Cholangiogenic hepatitis
 5) Hemachromatosis

Topic Content

CHRONIC HEPATITIS

Definition. Chronic hepatitis represents a series of liver disorders of varying causes and severity in which hepatic inflammation and necrosis continue for at least 6 months. Milder forms are nonprogressive or only slowly progressive, while more severe forms may be associated with scarring and architectural reorganization, which, when advanced, lead ultimately to cirrhosis. Finally, clinical and laboratory features of chronic hepatitis are observed occasionally in patients with such hereditary/metabolic disorders as Wilson’s disease (copper overload), α1 antitrypsin deficiency, and nonalcoholic fatty liver disease and even occasionally in patients with alcoholic liver injury. Although all types of chronic hepatitis share certain clinical, laboratory, and histopathologic features, chronic viral and chronic autoimmune hepatitis are sufficiently distinct to merit separate discussions.

Classification. Chronic hepatitis includes chronic viral hepatitis, drug-induced chronic hepatitis, and autoimmune chronic hepatitis. In many cases, clinical and laboratory features are insufficient to allow assignment into one of these three categories; these “idiopathic” cases are also believed to represent autoimmune chronic hepatitis.
Common to all forms of chronic hepatitis are histopathologic distinctions based on localization and extent of liver injury. These vary from the milder forms, labeled chronic persistent hepatitis and chronic lobular hepatitis, to the more severe form, formerly called chronic active hepatitis. When first defined, these designations were believed to have prognostic implications, which were not corroborated by subsequent observations. Categorization of chronic hepatitis based primarily on histopathologic features has been replaced by a more informative classification based on a combination of clinical, serologic, and histologic variables. Classification of chronic hepatitis is based on its cause; its histologic activity, or grade; and its degree of progression, or stage. Thus, neither clinical features alone nor histologic features—requiring liver biopsy—alone are sufficient to characterize and distinguish among the several categories of chronic hepatitis.

By cause:
- viral hepatitis (hepatitis B, hepatitis B plus D, or hepatitis C);
- autoimmune hepatitis, including several subcategories, I and II and III, based on serologic distinctions;
- drug-associated chronic hepatitis;
- toxic (including alcohol);
- metabolic;
- unknown cause, or cryptogenic chronic hepatitis.

Non-alcoholic liver disease is also known as “non-alcoholic steatohepatitis” can be related to chronic hepatitis.

By grade. Grade, a histologic assessment of necroinflammatory activity, is based on examination of the liver biopsy. An assessment of important histologic features includes the degree of periportal necrosis and the disruption of the limiting plate of periportal hepatocytes by inflammatory cells (so-called piecemeal necrosis or interface hepatitis); the degree of confluent necrosis that links or forms bridges between vascular structures—between portal tract and portal tract or even more important bridges between portal tract and central vein—referred to as bridging necrosis; the degree of hepatocyte degeneration and focal necrosis within the lobule; and the degree of portal inflammation.

Several scoring systems that take these histologic features into account have been devised, and the most popular are the histologic activity index (HAI), used commonly in the United States, and the METAVIR score, used in Europe.

Based on the presence and degree of these features of histologic activity, chronic hepatitis can be graded as mild, moderate, or severe.

By stage. The stage of chronic hepatitis, which reflects the level of progression of the disease, is based on the degree of hepatic fibrosis. When fibrosis is so extensive that fibrous septa surround parenchymal nodules and alter the normal architecture of the liver lobule, the histologic lesion is defined as cirrhosis. Staging is based on the degree of fibrosis as categorized on a numerical scale from 0–6 (HAI) or 0–4 (METAVIR). Several noninvasive approaches have been introduced to provide approximations of hepatic histologic stage, including serum biomarkers of fibrosis (e.g. Fibro-test, Acti-test, Steato-test, Nash-test) and imaging determinations of liver elasticity.

Epidemiology. Chronic infection by hepatitis viruses is by far the main cause of chronic hepatitis worldwide, with more than 500 million individuals chronically infected with hepatitis B virus (HBV) or hepatitis C virus (HCV). Chronic viral hepatitis B and C are the leading cause of cirrhosis and hepatocellular carcinoma worldwide and account for more than 1 million deaths per
year. Chronic HBV infection can be associated with infection by hepatitis D virus (HDV). Hepatitis A virus does not cause chronic hepatitis. Hepatitis E virus (HEV) does not cause chronic hepatitis, except rarely in patients who undergo liver transplantation. More than 350 million individuals, or 8.5% of the world’s population, are chronic HBV carriers. HCV, which is present on all continents, is estimated to cause chronic infection in approximately 170 million individuals, or 3% of the world’s population. Acute HCV infection evolves into chronic infection in 50 to 80% of cases. HDV infection occurs only in HBsAg carriers. Only approximately 2% of patients acutely coinfected with HDV and HBV develop chronic hepatitis D. Autoimmune hepatitis typically presents between the ages of 15 and 25 years or between the ages of 45 and 60 years, and it is more common in women. Along with primary biliary cirrhosis and primary sclerosing cholangitis, autoimmune hepatitis is one of the three major autoimmune liver diseases. NAFLD has a prevalence ranging from 15 to 30% in the United States. The true prevalence of alcoholic liver disease is not known, but nearly 1% of North American adults are believed to have alcoholic liver disease. NAFLD is one of the most common causes of elevated liver enzymes and chronic liver disease in the Western world. Its incidence in adults and children is rising rapidly owing to the ongoing epidemics of obesity, type 2 diabetes mellitus, and metabolic syndrome. Its prevalence is quite high in certain patient populations; for example, nearly 80% of type 2 diabetic patients and 90% of morbidly obese individuals have imaging evidence of NAFLD.

Etiology and pathogenesis. HBV is not a cytopathic virus. Rather, liver injury in chronic hepatitis B is a consequence of the local immune response at the immune elimination phase. In particular, liver injury is related to cytotoxic T cells that recognize and kill infected hepatocytes that express HBV antigens at their surface and to the local production of cytokines. Chronic inflammation triggers fibrogenesis through the activation of hepatic stellate cells. The hepatitis B X protein may also directly activate fibrogenesis. As a result, many patients with chronic hepatitis B have progressive fibrosis, which may evolve into cirrhosis.

Chronic HCV infection is responsible for necroinflammatory lesions of varying severity, sometimes associated with steatosis, which is the accumulation of triglycerides in hepatocytes. HCV is not a cytopathic virus. Liver injury in chronic hepatitis C is related to the action of immune effectors that recognize and kill infected hepatocytes that express HCV antigens at their surface. Chronic inflammation triggers fibrogenesis through the activation of hepatic stellate cells. Fibrosis progresses at nonlinear rates that are generally faster in older patients, in males, and in the presence of chronic alcohol intake, viral coinfections, or immunosuppression. The severity of chronic hepatitis is independent of the HCV RNA level and of the HCV genotype. This chronic inflammation and progression of fibrosis predispose patients to cirrhosis and hepatocellular carcinoma.

Chronic hepatitis D is generally severe, with more than 80% of patients developing cirrhosis.

Autoimmune hepatitis is believed to be caused by autoimmune reactions against normal hepatocytes in genetically predisposed persons or persons exposed to unidentified triggers of an autoimmune process against liver antigens. Associations are seen with the human leukocyte antigen (HLA) class I B8 and class II DR3 and DR52a loci. In Asians, autoimmune hepatitis is associated with HLA DR4.

Toxic hepatitis. The liver is central to the metabolism of exogenous substances. Most drugs and xenobiotics cross the intestinal brush border because they are lipophilic. Biotransformation is the process by which lipophilic therapeutic agents are rendered more
hydrophilic by the liver, resulting in drug excretion in urine or bile. In most instances, biotransformation changes a nonpolar to a polar compound through several steps. Foremost are oxidative pathways (e.g., hydroxylation) mediated by the cytochromes (CYPs) P-450. The next step is typically esterification to form sulfates and glucuronides, a process that results in the addition of highly polar groups to the hydroxyl group. These two enzymatic steps are referred to as phase I (CYP oxidation) and phase II (esterification). Other important metabolic pathways involve glutathione-S-transferase, acetylating enzymes, and alcohol dehydrogenase, but the principal metabolic pathways for most pharmacologic agents involve CYPs and subsequent esterification. The exact details of the pathogenesis of liver injury are unclear for most drugs. Although most liver injury involves direct hepatocyte necrosis or apoptosis (hepatocellular injury), some drugs injure primarily the bile ducts or canaliculi and cause cholestasis without significant damage to hepatocytes. Other drugs affect sinusoidal cells or present a particular pattern of liver injury affecting multiple cell types (mixed type). Another approach to drug reactions emphasizes the histologic changes involved and the cell type.

<table>
<thead>
<tr>
<th>REACTION TYPE</th>
<th>IMPLICATED DRUGS OR TOXINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoimmune (attack on cell surface markers)</td>
<td>Lovastatin, methylldopa, nitrofurantoin</td>
</tr>
<tr>
<td>Cholestatic (attack on bile ducts)</td>
<td>Anabolic steroids, carbamazepine, chlorpromazine, estrogen, erythromycin</td>
</tr>
<tr>
<td>Fibrosis (activation of stellate cells leads to fibrosis)</td>
<td>Methotrexate, vitamin A excess</td>
</tr>
<tr>
<td>Granulomatous (macrophage stimulation)</td>
<td>Allopurinol, diltiazem, nitrofurantoin, quinidine, sulfa drugs</td>
</tr>
<tr>
<td>Hepatocellular (damage to smooth endoplasmic reticulum and immune cell surface)</td>
<td>Acetaminophen, Amanita poisoning, diclofenac, isoniazid, lovastatin, nefazodone, trazodone, venlafaxine</td>
</tr>
<tr>
<td>Immunoallergic (cytotoxic cell attack on surface determinants)</td>
<td>Halothane, phenytoin, sulfamethoxazole</td>
</tr>
<tr>
<td>Mixed (see above)</td>
<td>Amoxicillin-clavulanate, carbamazepine, cyclosporine, herbs, methimazole</td>
</tr>
<tr>
<td>Oncogenic (hepatic adenoma formation)</td>
<td>Oral contraceptives, androgenic agents</td>
</tr>
<tr>
<td>Steatohepatitis (mitochondrial dysfunction: β-oxidation and respiratory chain)</td>
<td>Amiodarone, perhexiline maleate, tamoxifen</td>
</tr>
<tr>
<td>Vascular collapse (ischemic damage)</td>
<td>Cocaine, ecstasy, nicotinic acid</td>
</tr>
<tr>
<td>Veno-occlusive disease (endotheliitis of sinusoidal endothelial cells)</td>
<td>Busulfan, cytoxan</td>
</tr>
</tbody>
</table>

Steatosis in the liver can be present in a *microvesicular or macrovesicular* pattern. Macrovesicular steatosis, the most common form, is characterized histologically by a single vacuole of fat filling up the hepatocyte and displacing the nucleus to the cell’s periphery. Macrovesicular steatosis is typically caused by alcohol, diabetes, or obesity. Sometimes drugs such as corticosteroids or methotrexate may cause these hepatic changes. Amiodarone has been associated with a picture resembling alcoholic hepatitis, occasionally with progression to cirrhosis. The pathophysiology involves accumulation of phospholipids in the liver, eyes, thyroid, and skin. Treatment is primarily withdrawal of the drug and observation, although the half-life of amiodarone is prolonged.
In microvesicular steatosis, hepatocytes contain numerous small fat vesicles that do not displace the nucleus. These lesions are associated with disruption of mitochondrial DNA, resulting in anaerobic metabolism that leads to lactic acidosis in the most severe cases. Macrovesicular and microvesicular lesions may be observed concomitantly in some patients, and microvesicular lesions are more often associated with a poor prognosis. Hepatocellular necrosis may also be present. Acute fatty liver of pregnancy and Reye’s syndrome are two examples of severe liver diseases caused by microvesicular steatosis.

Nonalcoholic fatty liver disease NAFLD is seen most commonly in obese, diabetic, and hyperlipidemic nonalcoholic patients. Not all obese patients have fatty liver disease, but NASH occurs in about 3 to 5% of the overweight and obese population, and liver fibrosis is increased in up to 40% of these individuals. Most patients with hepatic steatosis have stable, nonprogressive disease, but NASH can progress to cirrhosis. Many patients who were previously described as having cryptogenic cirrhosis are now thought to have NASH, especially because catabolic cirrhosis reduces macrovesicular steatosis, so late biopsy may show just a bland cirrhosis. Histologically, NAFLD resembles alcoholic liver disease, but it occurs in individuals without significant alcohol consumption. Average alcohol consumption greater than two drinks per day in men and greater than one drink per day in women generally is not consistent with a diagnosis of NAFLD. In addition, the definition of NAFLD excludes patients with a history of exposure to steatogenic medications such as amiodarone, methotrexate, and tamoxifen. NAFLD encompasses a spectrum of abnormal liver histology, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. In simple steatosis, liver histology reveals macrovesicular steatosis without ballooning degeneration of hepatocytes or liver fibrosis. NASH, which is a more advanced form of NAFLD, is histologically characterized by macrovesicular steatosis, ballooning degeneration of the hepatocytes, and sinusoidal fibrosis.

The major risk factors for NAFLD include obesity, type 2 diabetes mellitus, metabolic syndrome, and dyslipidemia. Other comorbidities associated with NAFLD include polycystic ovary syndrome, hypothyroidism, hypopituitarism, and sleep apnea. Two fundamental defects in NAFLD are insulin resistance/hyperinsulinemia and excessive levels of nonesterified fatty liver within the hepatocytes. An excessive influx of nonesterified fatty acids into the hepatocytes results in macrovesicular steatosis, which is predominantly centrilobular in location. Additionally, patients with NAFLD have increased de novo intrahepatic lipogenesis. Although patients with NAFLD robustly esterify free fatty acids in neutral triglycerides, free fatty acids within the hepatocytes are considered the primary mediators of cell injury (lipotoxicity). In the background of hepatic steatosis, factors that promote cell injury, inflammation, and fibrosis include oxidative stress, endoplasmic reticulum stress, apoptosis, adipocytokines, and stellate cell activation. The sources of oxidative stress include mitochondria and microsomes. Adipocytokines that play an important role in the pathogenesis of NAFLD include adiponectin and TNF-α. It is unclear why some patients with NAFLD exhibit NASH, whereas other patients with a comparable risk factor profile have only simple steatosis. There is a consistent and significant relationship of PNPLA3 genetic polymorphisms with the severity of steatosis and other histologic features of NAFLD. However, the genetic factors that play a role in NASH and NAFLD have not been fully elucidated.

Alcoholic fatty liver disease will develop in nearly 90% of individuals who consume alcohol heavily (on average, >6 drinks per day), and some individuals develop the more severe conditions of alcoholic hepatitis and alcoholic cirrhosis. The mechanisms underlying alcoholic liver injury can be broadly categorized into those caused by the effects of alcohol directly on
hepatocytes and those caused by the effects mediated by Kupffer cells. The hepatocyte mechanisms include the altered redox state induced by alcohol and aldehyde dehydrogenase reactions, the oxidative stress and lipid peroxidation caused by the induction of CYP2E1 enzymes and the mitochondrial electron transfer system, and the effects of alcohol on the nuclear transcription factors (AMP kinase and SREBP-1c), protein adduct formation, and altered methionine and folate metabolism with resulting endoplasmic reticulum stress. Chronic alcohol consumption increases gut permeability, and the resulting portal endotoxemia activates Kupffer cells. Activated Kupffer cells release a number of proinflammatory mediators, including tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), interleukins 1, 6, 8, and 10, and platelet-derived growth factor (PDGF). TNF-α has plethora of biologic effects and causes hepatocyte apoptosis, whereas TGF-β1 and PDGF play important roles in stellate cell activation, collagen production, and hepatic fibrosis. Among the known risk factors for developing alcoholic liver disease, the amount of alcohol consumed is the single most important. For unclear reasons, only 30 to 35% of individuals with heavy and long-term drinking develop alcoholic hepatitis, and less than 20% develop cirrhosis. Women are at higher risk; for example, the risk of alcoholic cirrhosis increases after 10 years of alcohol consumption at quantities of more than 60 to 80 g/day in men, whereas in women, it can develop at quantities of only more than 20 g/day. Moreover, the peak incidence of alcoholic liver disease in women is approximately a decade earlier than in men. The type of alcoholic beverage consumed may not be as critical, but “spirits” and beer may be more hepatotoxic than wine. African-American and Hispanic ethnic groups may be predisposed to more significant alcoholic liver injury. Both obesity and protein-calorie malnutrition, in which micronutrients and antioxidant capacity are diminished, also are important predispositions. Polymorphisms in genes associated with alcohol metabolism (alcohol and aldehyde dehydrogenases and cytochrome P-450 enzymes) and dysregulated cytokine production (e.g., TNF-α) may also influence genetic susceptibility. In patients with other forms of chronic liver disease (e.g., viral hepatitis B or C), concomitant alcohol consumption significantly aggravates liver injury.

Clinical features and diagnosis. The clinical symptoms of chronic viral and autoimmune hepatitis are typically nonspecific, and many patients have no symptoms. Fatigue, sleep disorders, and right upper quadrant pain may be present. Often the diagnosis is made when liver test abnormalities are identified by blood testing during a routine health evaluation or assessment for an unrelated problem or at the time of voluntary blood donation. More advanced symptoms include poor appetite, nausea, weight loss, muscle weakness, itching, dark urine, and jaundice. Patients can progress to full-blown cirrhosis, with its typical clinical manifestations. If cirrhosis is present, weakness, weight loss, abdominal swelling, edema, bruisability, gastrointestinal bleeding, and hepatic encephalopathy with mental confusion may arise. Other findings may include spider angiomas, palmar erythema, ascites, edema, and skin excoriations.

Levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are usually two to five times the upper limit of normal. The ALT level is generally higher than the AST level, but both can be normal in mild or inactive disease or 10 to 25 times the upper limit of normal during acute exacerbations. Biologic tests can establish the specific diagnosis. Alkaline phosphatase and γ-glutamyl transpeptidase levels are usually minimally elevated unless cirrhosis is present. Serum bilirubin and albumin levels and the prothrombin time are normal unless the disease is severe or advanced. Serum immunoglobulin levels are mildly elevated or normal in chronic viral hepatitis but may be very elevated in autoimmune hepatitis. Results that suggest the presence of advanced fibrosis are a platelet count below 160,000, AST levels higher than ALT
levels, elevation in serum bilirubin, decrease in serum albumin, prolongation of the prothrombin
time, elevation in α-fetoprotein levels, and presence of rheumatoid factor or high globulin levels.

Serologic markers used to diagnose chronic hepatitis B include HBsAg, anti-HBs antibodies, total anti–hepatitis B core (HBc) antibodies and anti-HBc immunoglobulin M (IgM), HBeAg, and anti-HBe antibodies. Molecular markers include HBV DNA and HBV resistance
substitutions; real-time polymerase chain reaction (PCR)–based assays are the best way to detect
and quantify HBV DNA. Chronic HBV infection is defined by the persistence of HBsAg in the
serum for more than 6 months after the acute episode.

Chronic HCV infection is defined by the persistence of HCV RNA for more than 6
months. In patients with clinical and/or biologic signs of chronic liver disease, chronic hepatitis
C is diagnosed by the simultaneous presence of anti-HCV antibodies and HCV RNA. Detectable
HCV replication in the absence of anti–HCV antibodies is observed almost exclusively in
patients who are profoundly immunosuppressed, on hemodialysis, or agammaglobulinemic. The
HCV genotype, which has important therapeutic implications, should be determined. Anti-HCV
IgM, which is found in about 50% of patients with chronic hepatitis, is of no significance.

Markers of HDV infection should be sought at least once in every chronic HBsAg carrier.
Both total anti-HD antibodies and anti-HD IgM remain at high levels in chronic HDV infection,
and HDV RNA is present.

Autoimmune type 1 (classic) hepatitis is characterized by the presence of titers of 1 : 80
or higher of antinuclear (ANA), anti–smooth muscle (SMA), antiactin, and anti-
asialoglycoprotein receptor antibodies. Type 2 autoimmune hepatitis is characterized by similar
elevations of anti– liver–kidney microsomal 1 antibodies and anti–liver cytosol 1 antibodies
(anti-LKM1) without antinuclear or anti–smooth muscle antibodies. Type 3 is characterized by
elevation of anti-SLA (auto-antibodies against soluble liver and pancreas antigen) without ANA,
SMA and LKM-1. Liver biopsy shows features that are typical of all chronic types of hepatitis,
except plasma cell infiltrates.

Hepatic ultrasound can determine the texture and size of the liver and spleen, exclude
hepatic masses, and assess the gallbladder, intrahepatic bile ducts, and portal venous flow.
Computed tomography and magnetic resonance imaging of the liver are helpful if a mass or
other abnormality is found by ultrasound. Hepatic elastography can assess liver stiffness as a
marker of fibrosis.

Liver biopsy is usually critical for diagnosis and to determine the severity of disease.
Hepatocellular necrosis is typically eosinophilic degeneration or ballooning degeneration
throughout the parenchyma, greater in the periportal area, spotty, or piecemeal. Fibrosis also
typically begins in the periportal regions and can link adjacent portal areas or portal and central
areas (bridging fibrosis), distort the hepatic architecture, and lead to cirrhosis and portal
hypertension. The histologic grade of chronic hepatitis can be determined by combining scores
for periportal necrosis and inflammation, lobular necrosis and inflammation, and portal
inflammation.

Markers of viral hepatits:

<table>
<thead>
<tr>
<th>Antigen(s)</th>
<th>Antibodies</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV</td>
<td>C100-3</td>
<td>Anti-HCV</td>
</tr>
<tr>
<td></td>
<td>C33c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C22-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NS5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bloodborne agent, formerly labeled non-A, non-B hepatitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acute diagnosis:</td>
</tr>
</tbody>
</table>
| | | | anti-HCV (C33c, C22-3, NS5), HCV RNA
Chronic diagnosis: anti-HCV (C100-3, C33c, C223, NS5) and HCV RNA; cytoplasmic location in hepatocytes |
|------------|------------|------------|---|
| **HBV** | HBsAg | Anti-HBs | Bloodborne virus; carrier state
Acute diagnosis: HBsAg, IgM anti-HBc
Chronic diagnosis: IgG anti-HBc, HBsAg
Markers of replication: HBeAg, HBV DNA
Liver, lymphocytes, other organs
Nucleocapsid contains DNA and DNA polymerase; present in hepatocyte nucleus; HBcAg does not circulate; HBeAg (soluble, nonparticulate) and HBV DNA circulate—correlate with infectivity and complete virions
HBsAg detectable in >95% of patients with acute hepatitis B; found in serum, body fluids, hepatocyte cytoplasm; anti-HBs appears following infection—protective antibody |
| | HBeAg | Anti-HBe | |
| | HBCAg | Anti-HBc | |
| | | | |
| **HDV** | HBsAg | Anti-HBs | Defective RNA virus, requires helper function of HBV (hepadnaviruses); HDV antigen (HDAg) present in hepatocyte nucleus
Diagnosis: anti- |
| | HDAg | Anti-HDV | |
Evaluation of a patient with a suspected drug reaction is directed toward establishing the timeline for all drugs or herbs the patient may have taken. Responsible drugs have usually been started between 5 and 90 days before the onset of symptoms. Evidence of viral hepatitis, gallstones, alcoholic liver disease, pregnancy, severe right heart failure, or a period of hypotension points to these specific causes. Less commonly, cytomegalovirus, Epstein-Barr virus, or herpesviruses can cause hepatic injury, primarily in immunosuppressed individuals. If all these causes can be excluded, the temporal relationship fits, and the patient begins to improve after withdrawal of the drug, the diagnosis is more secure. Liver biopsy is of limited value because the histologic picture in most cases of drug-induced liver injury is no different from that of viral hepatitis. Nevertheless, an occasional liver biopsy specimen in an enigmatic case might reveal eosinophils or granulomas, consistent with a drug reaction.

Critical to the diagnosis of NAFLD is a careful history to be sure that alcohol ingestion is less than 20 g/day. Routine laboratory testing for other common liver diseases (e.g., hepatitis B and C, hemochromatosis), as well as less common ones (e.g., Wilson disease, α1-antitrypsin deficiency, autoimmune liver diseases), should be performed. Imaging studies can confirm characteristic features of a fatty liver (e.g., bright liver on ultrasound). These findings are nonspecific, however, and the ultimate diagnosis of NAFLD or NASH requires liver biopsy. The principal treatments are dietary changes and weight loss, but some medications can also be helpful in selected patients.

Patients with alcoholic liver disease may have signs and symptoms from underlying alcoholism as well as those caused by liver disease. Stigmata of chronic alcoholism include palmar erythema, spider nevi, bilateral gynecomastia, testicular atrophy, bilateral parotid enlargement, and Dupuytren’s contractures. The clinical features of liver disease will depend on the stage of alcoholic liver disease, that is, whether a patient has alcoholic fatty liver or more advanced liver disease such as alcoholic hepatitis and cirrhosis. Patients with alcoholic fatty liver disease are generally asymptomatic, but some patients may have anorexia, fatigue, right upper quadrant discomfort, and tender hepatomegaly. These patients may also have biochemical evidence of alcoholism and alcoholic liver disease with macrocytosis as well as elevated levels of aspartate aminotransferase (AST) and γ-glutamyl transpeptidase (GGT). Patients with alcoholic fatty liver typically do not have jaundice, ascites, or splenomegaly. Patients with alcoholic hepatitis may have a more dramatic presentation with severe malaise, fatigue, anorexia, fever, evidence of protein-calorie malnutrition, and features of decompensated liver disease, including jaundice, coagulopathy, ascites, and encephalopathy. Physical examination invariably shows at least some features of chronic alcoholism, and jaundice, ascites, and splenomegaly are common. The laboratory examination is typically abnormal. Common hematologic abnormalities include leukocytosis with neutrophil predominance, macrocytic anemia, thrombocytopenia, and a prolonged prothrombin time. Liver biochemistries are abnormal with an elevated AST and ratio of AST to alanine transferase (ALT), alkaline phosphatase, GGT, and total bilirubin, but decreased levels of serum albumin. The AST rarely exceeds 300 IU/L. Serum electrolyte
abnormalities including hypokalemia, hypomagnesemia, hypocalcemia, and hypophosphatemia are frequent. The diagnosis of alcoholic liver disease strongly depends on the history of excessive alcohol consumption and the presence of liver disease. Although laboratory abnormalities are not specific for alcoholic liver disease, they can be quite suggestive in the context of excessive alcohol consumption. An AST/ALT ratio of more than 2 is typical in alcoholic liver disease, and ALT values greater than 150 to 200 IU/L are very rare in alcoholic liver disease. Serology testing for co-existing chronic viral hepatitis is critical. Diagnostic dilemmas arise when a patient denies excessive alcohol consumption in the face of clinical features that are suggestive of alcoholic liver disease. Interviewing family members regarding specific alcohol consumption may be helpful in the accurate ascertainment of alcohol consumption. Elevated blood levels of carbohydrate-deficient transferrin, which is a form of transferrin with fewer than the four sialic acid chains present in normal transferrin, can identify recent heavy alcohol consumption. Hepatic imaging by ultrasound, computed tomography (CT), or magnetic resonance imaging (MRI) will show changes consistent with hepatic steatosis or more advanced forms of liver disease, such as alcoholic hepatitis and cirrhosis. Imaging is also important to exclude other forms of liver disease, including malignancy and biliary obstruction. Imaging findings specific for alcoholic liver disease include an enlarged caudate lobe, greater visualization of the right posterior hepatic notch, and focal fat sparing or geographic fat distribution. Because specific treatment for alcoholic hepatitis may be harmful in patients with other liver diseases, it is very important to exclude other predominant or coexisting liver diseases, including chronic viral hepatitis and drug-induced liver injury, especially from acetaminophen, by history, blood tests, and biopsy if needed. Hyperferritinemia generally reflects an acute phase reactant, rather than an iron overload disorder, so it usually will return to normal when the acute liver injury resolves. Liver biopsy is the key to precisely characterizing the nature of alcoholic liver disease and determining whether a patient has fatty liver or more advanced alcoholic hepatitis. Histologic features of alcoholic fatty liver include macrovesicular steatosis that is predominantly zone 3 in nature. In alcoholic hepatitis, the biopsy is more striking and reveals macrovesicular steatosis, lobular neutrophilic infiltration, Mallory’s hyaline, balloon degeneration of the hepatocytes, and perivenular fibrosis. In general, patients with alcoholic hepatitis also have histologic evidence of chronic liver injury in the form of more advanced fibrosis (perportal or bridging fibrosis, or cirrhosis).

NAFLD is often asymptomatic but may rarely also cause fatigue and right upper quadrant pain. Physical examination may reveal hepatomegaly, palmar erythema, and spider nevi. If liver disease is advanced, the features of liver failure, such as ascites, encephalopathy, and abdominal collateral vessels, are present. Simple steatosis is benign with a minimal risk of cirrhosis, whereas NASH is progressive and can lead to cirrhosis and liver failure. In up to 20% of patients with NASH, liver histology will worsen and cirrhosis will develop over a 10- to 15-year period. Disease progression during the early phase can be identified only with a repeat liver biopsy, but in later stages, the signs and symptoms of portal hypertension (e.g., abdominal collateral vessels and low platelet count) indicate the development of cirrhosis.

NAFLD is generally suspected when aminotransferase levels are asymptptomatically elevated in an individual with metabolic risk factors (obesity and diabetes) or when liver imaging (ultrasound, CT, or MRI) obtained for another reason shows fatty infiltration. The diagnosis of NAFLD requires that there is no history of previous or ongoing significant alcohol consumption, no exposure to steatogenic medications, and no evidence of other causes of liver disease, such as viral hepatitis B or C. Elevated levels of aminotransferases, although common, are not required
for the diagnosis of NAFLD. In contrast to alcoholic liver disease, ALT levels are higher than AST levels, but they rarely exceed 250 IU/L. In general, AST and ALT levels do not have diagnostic or prognostic significance.

Mild hyperferritinemia is common and should not be confused with hereditary hemochromatosis. Similarly, low-grade autoantibody (antinuclear antibody, anti–smooth muscle antibody) positivity is not uncommon and should not be confused with autoimmune liver disease. Because steatosis is common in patients with Wilson’s disease, serum ceruloplasmin should be obtained as part of the diagnostic evaluation. Fatty liver on ultrasonogram has a positive predictive value of only 77% and a negative predictive value of only 67% when compared with liver biopsy. Abdominal MRI is more accurate, but its high cost limits its usefulness in routine practice. Because none of these three tests can differentiate simple steatosis from NASH nor identify cirrhosis until hepatic fibrosis has caused overt portal hypertension, liver biopsy is required to establish the presence of NASH or cirrhosis. Common indications for a percutaneous liver biopsy in patients with NAFLD include persistently high aminotransferase levels, inability to exclude a competing or a coexisting cause (e.g., iron overload or autoimmune liver disease), or clinical suspicion of severe liver disease. In patients with NASH, liver histology shows steatosis, inflammation, ballooning, and fibrosis.

Differential diagnosis. Patients with suspected chronic viral or autoimmune hepatitis should be evaluated carefully for fatty liver, alcohol- or drug-induced liver disease, and metabolic liver diseases, each of which can coexist with hepatitis. Liver biopsy can exclude other diagnoses that mimic chronic hepatitis, including fatty liver, alcoholic liver disease, steatohepatitis, drug-induced liver disease, sclerosing cholangitis, iron overload, and veno-occlusive disease.

<table>
<thead>
<tr>
<th>Liver test patterns in hepatobiliary disorders.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Disorder</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Hemolysis/Gilbert’s syndrome</td>
</tr>
<tr>
<td>Acute hepatocellular necrosis (viral and drug hepatitis, hepatotoxins, acute heart failure)</td>
</tr>
<tr>
<td>Chronic hepatocellular</td>
</tr>
<tr>
<td>Disorders</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Alcoholic hepatitis, cirrhosis</td>
</tr>
<tr>
<td>Intra- and extrahepatic cholestasis</td>
</tr>
<tr>
<td>(Obstructive jaundice)</td>
</tr>
<tr>
<td>Infiltrative diseases (tumor, granulomata; partial bile duct obstruction)</td>
</tr>
</tbody>
</table>

Differences in diagnostic and therapy of viral hepatitis.

<table>
<thead>
<tr>
<th>Type of Hepatitis</th>
<th>Diagnostic Test(s)</th>
<th>Autoantibodies</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic hepatitis B</td>
<td>HBsAg, IgG anti-HBc, HBeAg, HBV DNA</td>
<td>Uncommon</td>
<td>IFN-α, PEG IFN-α</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oral agents: First-line: entecavir, tenofovir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Second-line: lamivudine, adefovir, telbivudine</td>
</tr>
<tr>
<td>Chronic hepatitis C</td>
<td>Anti-HCV, HCV RNA</td>
<td>Anti-LKM1a</td>
<td>PEG IFN-α plus ribavirin</td>
</tr>
<tr>
<td>Chronic hepatitis D</td>
<td>Anti-HDV, HDV RNA, HBsAg, IgG anti-HBc</td>
<td>Anti-LKM3</td>
<td>IFN-α, PEG IFN-α</td>
</tr>
</tbody>
</table>
Autoimmune hepatitis
ANAd (homogeneous), anti-LKM1 (±)
Hyperglobulinemia
ANA, anti-LKM1 anti-SLAe
Prednisone, azathioprine

| Drug-associated — | - | Uncommon | Withdraw drug |
| Cryptogenic | All negative | None | Prednisone (?), azathioprine (?) |

Treatment. Chronic HBV infection is not curable, but it can usually be controlled by appropriate antiviral drugs. HCV infection is curable, but less than 50% of patients who have access to therapy are cured (look table above).

Autoimmune hepatitis responds to immunosuppression with corticosteroids and azathioprine. The clinical symptoms and liver test abnormalities of autoimmune hepatitis generally respond promptly to prednisone, usually at a dose of 20 to 30 mg/day, with a decrease in serum aminotransferase levels to the normal or nearnormal range within 1 to 3 months; higher doses may be required in patients with more severe disease. Lack of a biochemical or clinical response should lead to reevaluation of the diagnosis. Azathioprine 50 to 100 mg can be combined with prednisone or added later to reduce long-term steroid side effects.

Prompt discontinuation of a suspected drug in toxic hepatitis is mandatory. Available antidotes should be used for acetaminophen (N-acetylcysteine) and Amanita poisoning (penicillin 300,000 to 1 million U/kg/day intravenously and thiocetic acid 5 to 100 mg every 6 hours intravenously have been recommended, but there are no controlled trials). General supportive therapy ranges from intravenous fluid replacement to intensive monitoring and treatment of patients with hepatic encephalopathy secondary to acute liver failure. Liver transplantation is performed in more than 50% of patients with idiosyncratic drug-induced acute liver failure because the survival rate in this setting without transplantation is less than 20%.

Total abstinence, which is the most important treatment measure, is mandatory for the improvement of the clinical and histologic features of alcoholic liver disease. Its benefits are unequivocal, even in patients with severe decompensation. However, long-term abstinence is difficult to achieve, so a multidisciplinary approach with counseling and medications that promote abstinence should be considered. Disulfiram is not commonly used owing to its poor tolerability and hepatotoxicity. Opioid antagonists, such as naltrexone (50 mg/day for up to 6 months or even longer), nalmefene (20 mg/day as maintenance), and acamprosate (333 mg tablets, 2 tablets three times each day for 1 year) can help promote abstinence when used as part of a multidisciplinary approach. If a patient’s liver biopsy is consistent with alcoholic hepatitis and there is no evidence of other inflammatory liver diseases, such as hepatitis C, corticosteroids and pentoxifylline (400 mg three times daily for 28 days) are of some benefit. Prednisolone (40 mg per day for 4 weeks) should be given to carefully selected patients who have a score of greater than 32 on Maddrey’s discriminant function (4.6 × [patient’s prothrombin time—control prothrombin time] + total bilirubin level) and encephalopathy, but do not have gastrointestinal bleeding or systemic infection. All patients with alcoholic hepatitis and alcoholic cirrhosis should be assessed and treated for protein-calorie malnutrition and micronutrient deficiency.

Lifestyle modification with dietary restriction and regular exercise is the first choice of treatment for NAFLD. It is generally recommended that patients with NAFLD lose 10% of their
body weight in a gradual fashion, but this goal is difficult to achieve. If resources are available, a multidisciplinary approach with behavioral therapy, dietary advice, and monitoring by a professional nutritionist and an exercise expert is more successful than a prescriptive approach. Statins (e.g., atorvastatin 20 mg daily) with or without vitamins C and E can improve liver test results and reduce subsequent NAFLD. In a large trial, 800 IU of vitamin E administered daily for 2 years significantly improved liver histology. Thiazolidinedione insulin sensitizers (pioglitazone and rosiglitazone) improve steatosis, inflammation, and ballooning, but may not improve fibrosis. Unfortunately, the weight gain that is common with thiazolidinediones may offset the histologic benefits that they offer. In morbidly obese individuals with NASH and other significant metabolic comorbidities, foregut bariatric surgery can lead to significant improvement in hepatic histology, but the physician must exclude the presence of portal hypertension before offering this type of surgery. Patients with NAFLD often have dyslipidemia that puts them at excessive risk for coronary artery disease; their dyslipidemia should be treated aggressively with statins and other lipidlowering agents, which can be safely administered to patients with NAFLD and NASH. Carefully selected patients with decompensated cirrhosis owing to NASH can be treated with liver transplantation, but recurrence during the post-transplantation period is common.

Materials for self-control:

Situation tasks:

1. A 22 years old woman complained of right subcostal pain, nausea, and decreased appetite. She fell ill 2 months after appendectomy when jaundice appeared. She was treated in an infectious hospital. 1 year later mentioned symptoms recurred. Examination detected subicteric sclerae, enlarged firm liver. What is the preliminary diagnosis? What additional tests are necessary?

2. 32 years old patient suffers from chronic viral hepatitis. He complains of dull pain in the right subcostal area, nausea, dry feeling in mouth. Objectively: liver size is 13-21-11 cm (according to Kurlov), spleen is enlarged by 2 cm, aspartate aminotransferase is 3,2 micromole/l·h, alanine aminotransferase - 4,8 millimole/l·h. Serological study revealed HBeAg, high concentration of DNA HBV. What is the diagnosis? What additional tests are necessary for the patient? What is the treatment?

Tests:

1. A 24-year-old female patient complains of pain in the right hypochondrium that is getting worse after taking meals; nausea, fever up to 37,70°C, icteric skin, pain in the large joints. These presentations have been observed for 8 months. Objectively: hepatosplenomegaly. Blood test results: ESR - 47 mm/h, total bilirubin - 86,1 mmol/l, direct bilirubin - 42,3 mmol/l. Total protein - 62 g/l, albumins - 40%, globulins - 60%, gamma globulins - 38%. Viral hepatitis markers were not detected. The antibodies to smooth muscle cells are present. On ultrasound the portal vein diameter was of 1 cm. What is the most likely diagnosis?
 - A. Primary biliary cirrhosis
 - B. Autoimmune hepatitis
 - C. Gilbert’s syndrome
 - D. Cholangiogenic hepatitis
 - E. Hemachromatosis
2. A 40 y. o. patient was admitted to the gastroenterology department with skin itching, jaundice, discomfort in the right subcostal area, generalized weakness. On examination: skin is jaundice, traces of scratches, liver is +5 cm, spleen is 6x8 cm. In blood: alkaline phosphatase - 2.0 mmol/(hour*L), general bilirubin - 60 mkmol/L, cholesterol - 8.0 mmol/L. What is the leading syndrome in the patient?
 A. Cytolytic
 B. Cholestatic
 C. Mesenchymal inflammatory
 D. Asthenic
 E. Liver-cells insufficiency

3. 23 years old patient has complaints on pain in the right subcostal area, periodic bitter belch, nausea, appetite loss. From the anamnesis: appendectomy had been conducted three years ago. In 2 months icterus appeared and patient was treated in infectious hospital. At the examination liver is enlarged on 2 cm. In blood: general bilirubin - 76 mkmol/l, direct bilirubin - 14.9 mkmol/l, ALT - 1.35. What disease are you thinking of?
 A. Cirrhosis of liver
 B. Chronic cholangitis
 C. Chronic cholecystitis
 D. Benign Gilber`s icterus
 E. Chronic hepatitis B

4. Patient K., 24 years old, complains of pain in the right subcostum and joints, icteric skin, weight loss - 10 kg for a year, temperature 38°C. A disease began after childbirth half a year ago. Objectively: icteric skin and scleras, there are xanthomas on eyelids. Liver +4 cm, dense, painful, edge is sharp. Spleen +2 cm. Blood tests: AST - 2.8, ALT - 3.4, general bilirubin - 97.6, free - 54.6, HbsAg was not determined. Name the basic mechanism of pathogenesis:
 A. Viral infection
 B. Toxic damage of hepatocytes
 C. Fatty dystrophy of liver
 D. Violation of bile outflow
 E. Autoimmune

5. 20 years old patient was diagnosed chronic viral hepatitis in gastroenterologic unit. What group of preparations can be included to the base therapy?
 A. Hepatoprotector
 B. Antibacterial
 C. Anabolic steroid hormones
 D. Vitamins
 E. Glucocorticoids and cytostatic

6. 36 years old patient complains of general weakness, excitability, heavy feeling in the right subcostum, subfebrile temperature. From the anamnesis: viral hepatitis 2 years ago. The condition worsened during last 3 months. Objectively: lower edge of liver 3 cm below right
costal arc. Laboratory analysis: general bilirubin - 64,5 mkmol/l, direct - 22,7 mkmol/l, gamma - globulins - 31%, AST - 1,42, ALT - 1,96. The signs of active virus replication (HBeAg-positive reaction) are found. Choose one of preparations for ethiotropic treatment of the patient:

A. Alpha - interferon
B. Prednizolon
C. Essentiale - forte
D. Carsil
E. Levamizol

7. A man, 40 years old, suffers on autoimmune hepatitis. In blood: general bilirubin 42 mkmol/l, transaminases: ALT - 2,3, AST - 1,8. What is the most effective treatment?

A. Glucocorticoids, cytostatic preparations
B. Antibacterial preparations
C. Hepatoprotector preparations
D. Antiviral preparations
E. Hemosorption, vitaminotherapia

8. Patient, 28 years old, has been contacting with toxic chemicals for 6 years. His complaints are headache, increased fatigue, heavy feeling in the right subcostum, decreased appetite, icterus. Objectively: skin and scleras are subicteric. Abdomen is bloated, liver +5 cm, surface is even. In blood: Hb - 110 g/l, L - 8,1x109/l, blood sedimentation - 30 mm/h, general bilirubin - 65 mkmol/l, sugar - 6,3 mmol/l. What diagnosis is the most credible?

A. Hemochromatosis
B. Chronic toxic hepatitis
C. Chronic pancreatitis
D. Viral hepatitis
E. Benign hyperbilirubinemia

9. Woman, 37 years old, saw her doctor owing to the exacerbation of chronic hepatitis. Increased indirect bilirubin, AST, ALT levels and decreased protein and prothrombin levels were found in blood. What pathological process can stipulate these changes?

A. Cholestasis
B. Cytolysis
C. Portal hypertension
D. Hypersplenism
E. Violation of hemostasis

10. 39 years old patient complains of icterus, skin itching, nausea, pain in the right subcostum, especially after rich, fried food, increased body temperature in the evening, general weakness, hemorrhage of gums. He is ill for nearly two years. Skin and scleras are icteric, there are scratch tracks on the skin and xanthelasmas on eyelids. Liver is increased on 4 cm. In the analyses there are hyperbilirubinemia at the expense of conjugated bilirubin, hypercholesterinemia, increased activity of alkaline phosphatase. What is the most reliable diagnosis?

A. Chronic cholestatic hepatitis
B. Chronic cholecystitis
C. Hemolytic anemia
D. Cholecystolithiasis
E. Cancer of pancreas head

Correct answers for the situation tasks:

The answers for the tests:
1-B, 2-B, 3-E, 4-E, 5-A, 6-A, 7-A, 8-B, 9-B, 10-A.

Recommended literature:

Composed by Radionova T. O.