GUIDELINES
FOR STUDENTS
INDEPENDENT WORK
IN THE PRACTICAL CLASSES PREPARING

<table>
<thead>
<tr>
<th>Academic discipline</th>
<th>Internal medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module</td>
<td>Current practice of internal medicine</td>
</tr>
<tr>
<td>Content module</td>
<td>Management of the patients with main symptoms and syndromes in cardiology clinic</td>
</tr>
</tbody>
</table>
| Study subject | Management of the patients with heart murmurs
Management of the patients the with cyanosis |
| Course | VI |
| Faculty | of foreign students training |

Poltava 2016.
1. The aims of the training course:

To Know:
Differential diagnosis of functional and organic, systolic and dyastolic murmurs.
Plan of survey, additional instrumental examination methods (radioscopy lung and heart, ECG, Echo-CG)

To be able to:
- Conduct surveys and patients examination with major cardiological syndromes
- To draft survey the patients with heart diseases, to justify the use of major invasive and non-invasive diagnostic techniques witch are using in cardiology, to identify indications and contraindications for their conduction, possible complications
- Identify different options for the course and complications of heart disease
- Carry out differential diagnosis, justify and formulate diagnoses for major cardiac syndromes based on laboratory analysis and test tool
 - Prescribe treatment, determine prognosis, to conduct primary and secondary prevention in heart disease
 - Register and interpret the ECG in 12 assignments
 - Measure and interpret blood pressure
 - Diagnose and assist in syncope
 - Diagnose and assist in hypertensive crisis
 - Diagnose and assist with arterial hypotension
 - Diagnose and assist in the paroxysmal disorders of cardiac rhythm
 - Diagnose and assist syndrome Morhany-Edems-Stoks
 - Conduct pulmonary heart reanimation
 - Demonstrate knowledge of moral principles medical specialist and professional principles of subordination

The contents of topic:
Text

Heart Murmurs

Systolic

Early systolic
 - Physiologic (innocent)
 - Small ventricular septal defect
 - Large ventricular septal defect with pulmonary hypertension
 - Severe acute mitral or tricuspid regurgitation
 - Tricuspid regurgitation without pulmonary hypertension

Midsystolic
 - Physiologic (innocent)
 - Vibratory murmur
 - Hyperkinetic states
 - Pulmonary ejection murmur
 - Aortic ejection murmur of old age

Obstruction to left ventricular outflow
 - Valvular aortic stenosis
 - Supravalvular aortic stenosis
 - Hypertrophic cardiomyopathy
 - Aortic valve prosthesis

Aortic dilatation

Murmurs of mitral regurgitation (occasionally)
Aortic flow murmur in aortic regurgitation
Coarctation of aorta
Supraclavicular arterial bruit
Obstruction to right ventricular outflow
 Supravalvular pulmonary arterial stenosis
 Pulmonic valvular stenosis
 Subpulmonic (infundibular) stenosis
Flow murmur of atrial septal defect
Idiopathic dilatation of pulmonary artery
Pulmonary hypertension of any cause (occasionally)
Late systolic
 Mitral valve prolapse
 Tricuspid valve prolapse
Holosystolic
 Mitral regurgitation
 Tricuspid regurgitation secondary to pulmonary hypertension
 Ventricular septal defect
 Patent ductus arteriosus or aorticopulmonary window with pulmonary hypertension

Diastolic

Early diastolic
 Aortic regurgitation
 Pulmonic regurgitation associated with pulmonary hypertension, congenital or valvular disease
Middiastolic
 Mitral stenosis
 Mitral valve prosthesis
 Tricuspid stenosis
 Atrial myxoma
 Left atrial ball-valve thrombus
 Austin Flint murmur
 Increased diastolic atroventricular flow
 Hyperkinetic states
 Mitral and tricuspid regurgitation
 Left-to-right shunt (e.g., ventricular septal defect)
 Acute rheumatic valvulitis
 Complete heart block
 Coronary artery stenosis
Presystolic
 Mitral stenosis
 Tricuspid stenosis
 Atrial myxoma
 Left-to-right shunt
 Complete heart block
 Severe pulmonic stenosis
 Fourth heart sound
 Severe aortic insufficiency

Heart Murmur, Diastolic:
A diastolic murmur is a finding that provides a clue to an underlying disease process. Unlike their systolic counterparts, diastolic murmurs almost always indicate underlying heart disease.

Approach

Given the broad range of factors that may cause diastolic murmurs, a two-part scheme is used to narrow the differential diagnosis. First, the timing of the murmur (early, mid-, or end-diastolic) helps in localizing the anatomic abnormality to a specific valve or other heart structure. Second, historical features such as congestive heart failure, rheumatic disease, congenital abnormalities, or connective tissue and collagen vascular disease further characterize the underlying cause.

History

A. Symptoms. Many patients with diastolic murmurs will not present with specific complaints; rather, the murmurs will be found in the course of a routine medical examination. With symptomatic lesions, the patient may experience dyspnea, chest pain, or palpitations. Pulmonary regurgitation (PR) is usually asymptomatic except in its most severe forms. More specific symptoms include chest or neck pounding in aortic regurgitation (AR); hemoptysis, embolism, or hoarseness (left recurrent laryngeal nerve compression from the left atrium) in mitral stenosis (MS); failure to thrive or frequent respiratory infections with congenital MS; edema in tricuspid stenosis (TS); and fever, anemia, weight loss, embolism, digital clubbing, arthralgias, syncope, rash, and Raynaud’s phenomenon with an atrial myxoma (1).

B. Past medical history. Does the patient have a history of rheumatic fever (RF)? RF is the most common cause of all diastolic murmurs (mitral → aortic → tricuspid → pulmonic) (2). Of patients with mitral stenosis, 50% will have a history of rheumatic fever (3).

1. Endocarditis. Vegetations can lead to either AR/PR or MS/TS.

2. Pulmonary hypertension with PR is classically associated with the Graham Steell murmur, heard in the left third interspace near the sternum and propagated down the sternum.

3. Connective tissue and collagen vascular diseases predispose to aortic root dilatation and AR.
4. Congenital heart malformations can be associated with multiple valvular lesions, left ventricular (LV) outflow tract abnormalities, or shunts (with resultant volume overload).

5. Atrial myxoma is a rare cause of variable AV valve obstruction.

6. Syphilis can cause aortitis and AR.

Physical examination (PE)

A. Table 7.3 lists characteristic PE findings of diastolic murmurs.

B. Fine points of the physical examination

1. Is the murmur of AR louder at the right sternal border? If so, consider aortic root dilation. Remember, whereas the duration of the chronic AR murmur is directly proportional to the severity of the regurgitation, the duration of the acute AR murmur may not predict its severity (3).

2. Is the murmur of MS shorter, or does it extend closer to S2? The length of this murmur, not its intensity, is directly proportional to the severity of the stenosis (3). In addition, the murmur may not be audible with increased heart rates because of shortening of diastole.

3. Does the murmur of MS vary from examination to examination? If so, and especially if it is introduced by a “plop” sound, consider atrial myxoma.

Testing

Echocardiogram is the essential test for confirming the anatomic location of the murmur and its severity. Transthoracic echocardiography (ECHO) is generally sufficient, unless endocarditis is suspected, in which case a transesophageal ECHO is preferred to evaluate for vegetations. If aortic root dilatation is present on ECHO, a computed tomography or magnetic resonance imaging scan may help to delineate the anatomy further. Additional laboratory testing may be warranted to further evaluate the underlying cause (e.g., serologic studies for collagen vascular disease, serologic test for syphilis, and so on).

Diagnostic assessment
With a careful examination and thorough history, the valve causing the murmur and the probable cause of the valvular lesion can be identified prior to ordering the definitive test (ECHO). The most common cause of all diastolic murmurs is still rheumatic heart disease, even though the incidence of acute rheumatic fever has decreased. Mitral stenosis is almost invariably caused by rheumatic heart disease (98% in one study of excised valves) (3,4), with the remainder caused by vegetations (from endocarditis) or congenital factors (4). Tricuspid stenosis is also predominantly rheumatic in origin and is rarely an isolated lesion. Other causes of TS include carcinoid and congenital malformations. Rheumatic heart disease is the leading cause of chronic AR, followed by congenital bicuspid valves and aortic root dilatation (Marfan’s syndrome, Ehlers-Danlos syndrome, ankylosing spondylitis, and syphilitic aortitis). If chronic, AR can result in LV dilation and compensation; if acute, it can be associated with severe LV overload and significant symptoms. Acute AR is most often related to endocarditis, aortic dissection, and trauma. Pulmonary regurgitation without hypertension has multiple causes, including pulmonary trunk dilation, endocarditis, carcinoid, trauma (from balloon-tipped catheters), and rheumatic fever. The nonstenotic physiologic murmurs are related to high-flow states across an otherwise normal mitral or tricuspid valve. For a mitral flow murmur, the primary lesions are usually mitral regurgitation, ventricular septal defects, or patent ductus arteriosus. For a tricuspid flow murmur, an atrial septal defect or severe tricuspid regurgitation is the most common cause. The Austin–Flint murmur, caused by increasing left ventricular pressure pushing the anterior mitral leaflet into the flow of blood coming from the atrium, is the result of significant aortic regurgitation.
<table>
<thead>
<tr>
<th>Timing</th>
<th>Murmur</th>
<th>Pitch</th>
<th>Location</th>
<th>Shape or quality</th>
<th>Maneuvers and other features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early diastolic murmurs</td>
<td>Aortic regurgitation (AR)</td>
<td>High</td>
<td>Left lower sternal border (LLSB)</td>
<td>Decrescendo</td>
<td>Have patient lean slightly forward; hold breath in deep expiration; press diaphragm firmly against chest; increases with hand grip and squatting; listen for Austin Flint murmur.</td>
</tr>
<tr>
<td></td>
<td>Pulmonary regurgitation (PR) with pulmonary hypertension</td>
<td>High</td>
<td>LLSB</td>
<td>Decrescendo</td>
<td>Distinguish from AR by prominent jugular A-wave; right ventricular (RV) heave; RV S$_2$ that increases with inspiration</td>
</tr>
<tr>
<td></td>
<td>PR without pulmonary hypertension</td>
<td>High</td>
<td>LLSB</td>
<td>Crescendo-decrescendo</td>
<td>RV heave (sometimes); palpable thrill over pulmonary area may signify dilation of pulmonary artery; follows silent gap after ! (unlike other PR murmur)</td>
</tr>
<tr>
<td>Middiastolic murmurs</td>
<td>Mitral stenosis</td>
<td>Low</td>
<td>Point of maximal impulse (PMI)</td>
<td>Rumbling; may have presystolic accentuation</td>
<td>Have patient on left side, hold be lightly on chest; may be preceded by opening snap; increased with handgrip; decreased with inspiration. Inspiratory augmentation.</td>
</tr>
<tr>
<td></td>
<td>Tricuspid stenosis</td>
<td>Low</td>
<td>LLSB (near xyphoid)</td>
<td>Rumbling</td>
<td>No presystolic component; preceded by low-pitched S$_2$, instead of high-pitched opening snap.</td>
</tr>
<tr>
<td></td>
<td>Nonstenotic rumbles</td>
<td>Low</td>
<td>PMI or LLSB</td>
<td>Rumbling</td>
<td>Begins after S$_2$; increased with handgrip and squatting. In severe AR, this murmur may be absent.</td>
</tr>
<tr>
<td></td>
<td>Austin-Flint (mitral origin, associated with AR)</td>
<td>Low</td>
<td>PMI</td>
<td>Rumbling</td>
<td></td>
</tr>
</tbody>
</table>
Heart Murmur, Systolic

Systolic murmurs can herald significant clinical deterioration and sudden death, or they can represent stable or clinically insignificant conditions. Although technologic advances in cardiac diagnostic testing continue, auscultation remains the mainstay of diagnosis and is the key to the cost-effective use of technology.

Approach

Systolic murmurs can develop in all age groups. Close attention should be given to the history [looking for associated symptoms (e.g., dyspnea)] and to the physical examination (looking for specific murmur characteristics described below).

History

A. General issues in the history. The history can provide important clues as to whether the murmur is clinically significant. Any history of rheumatic fever, previously known valvular disease, congenital heart disease, or intravenous drug abuse would be important to ascertain.

Murmurs of early adulthood suggest congenital or rheumatic disease, whereas murmurs with onset later in life are consistent with degenerative valvular changes.

B. Patient symptoms. Patients should be asked about shortness of breath, dyspnea on exertion, orthopnea, and paroxysmal nocturnal dyspnea. Patients with these symptoms warrant an expedited evaluation because these symptoms suggest cardiac decompensation. Advanced aortic stenosis specifically is associated with chest pain, syncope, and heart failure, although a gradient across the valve can exist for years prior to symptom onset. Chest discomfort is often present in advanced disease, but sudden death occurs in 15% of patients with no previous symptoms (1).

C. Association of a murmur with a specific disease. Recent myocardial infarction endocarditis could cause papillary muscle dysfunction resulting in mitral or tricuspid regurgitation. Mitral regurgitation can be seen in connective tissue disease, coronary artery disease, and congenital disease, but is commonly associated with conditions leading to left ventricular dilatation such as congestive heart failure (CHF).

Endocarditis, myocardial infarction, trauma, prolapse, or congenital heart disease usually precede tricuspid regurgitation. Mitral valve prolapse, which is clinically characterized by
palpitations, fatigue, and chest pain, is often associated with anxiety. Hypertrophic
cardiomyopathy can be seen in patients with a family history and usually presents between the
ages of 20 and 40 years. Presenting symptoms include dyspnea on exertion, chest pain,
palpitations, or syncope. It is an important cause of sudden death in athletes. A history of
anemia, thyroid disease, or fever should also be elicited from patients being evaluated for
a systolic murmur as each of these conditions can cause a murmur from increased flow.

Physical examination

A. Technique. Auscultate the heart with the bell to best detect lower frequencies and the heart
sounds (S1-S4). The quality of the murmur is best heard with the diaphragm. Inspiration
increases the audibility of right ventricular sounds.

B. Murmur characteristics. Table 7.4 presents a summary of the characteristics of different
causes of systolic murmurs (2,3). Etchell et al. (3) have prepared a comprehensive review on
the usefulness of specific physical examination findings in the diagnosis of systolic murmurs.

Testing

Testing of an undiagnosed cardiac murmur can include an electrocardiogram (ECG), a chest x-
ray study (CXR), and an echocardiogram. Echocardiograms, although useful for quantification
of stenotic valvular disease, can overestimate the degree of regurgitation.

A. Aortic stenosis. Specific ECG findings in aortic stenosis can include left ventricular
hypertrophy (LVH), left axis deviation, conduction disturbances, and atrial hypertrophy. On
CXR, cardiac size remains normal until stenosis is severe, then signs of CHF may be present.
The echocardiogram may reveal thickened or calcified aortic leaflets, bicuspid valve, and
LVH. The size of
the valve can be estimated and the pressure gradient across the valve can
be assessed. Cardiac catheterization can also be used to assess the size of the valve and the
gradient. Even though echocardiography is accurate in measuring valve area and gradient,
catheterization is usually indicated because 50% of patients above age 40 years have coronary
artery disease.

B. Mitral regurgitation. In mitral regurgitation, the ECG may reveal LVH with left atrial
enlargement and later in the course, atrial fibrillation. In severe disease, CXR usually reveals
cardiomegaly without pulmonary venous congestion. The echocardiogram reveals valvular
anatomy, but can overestimate the severity of the regurgitation. Exercise testing can be used
to determine clinical deterioration in mitral regurgitation. Catheterization is used to assess the contractile state of the ventricle as well as the regurgitant and forward stroke volume.

C. Other disease processes. The ECG with tricuspid insufficiency often reveals atrial fibrillation. The CXR may show right atrial hypertrophy, and the echocardiogram shows valvular anatomy. Pulmonic stenosis will lead to ECG findings consistent with right ventricular hypertrophy. Hypertrophic cardiomyopathy is best diagnosed by echocardiography. ECG may reveal LVH and occasionally a shortened PR interval is seen. Cardiac catheterization can be used to quantify the gradient caused by the hypertrophic lesion.

<table>
<thead>
<tr>
<th>Table 7.4 Characteristics of systolic murmurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic murmurs</td>
</tr>
<tr>
<td>Tricuspid regurgitation</td>
</tr>
<tr>
<td>Aortic stenosis</td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
</tr>
<tr>
<td>Tricuspid insufficiency</td>
</tr>
<tr>
<td>Mitral regurgitation</td>
</tr>
<tr>
<td>Pulmonic stenosis</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
</tr>
<tr>
<td>Hypertrophic cardiomyopathy</td>
</tr>
</tbody>
</table>

Problem definition: differentiation between AS and MR murmurs

A typical normal heart sound signal that corresponds to a heart cycle consists of four structural components:

– The first heart sound (S₁, corresponding to the closure of the mitral and the tricuspid valve).
– The systolic phase.
– The second heart sound (S₂, corresponding to the closure of the aortic and pulmonary valve).
Heart sound signals with various additional sounds are observed in patients with heart diseases. The tone of these sounds can be either like murmur or click-like. The murmurs are generated from the turbulent blood flow and are named after the phase of the heart cycle where they are best heard, e.g. systolic murmur (SM), diastolic murmur (DM), pro-systolic murmur (PSM) etc. The heart sound diagnosis problem consists in the diagnosis from heart sound signals of a) whether the heart is healthy, or not and b) if it is not healthy, which is the exact heart disease. In AS the aortic valve is thickened and narrowed. As a result, it does not fully open during cardiac contraction in systolic phase, leading to abnormally high pressure in the left ventricle and producing a systolic murmur that has relatively uniform frequency and rhomboid shape in magnitude (Figure 1a). In MR the mitral valve does not close completely during systole (due to tissue lesion) and there is blood leakage back from the left ventricle to the left atrium. MR is producing a systolic murmur that has relatively uniform frequency and magnitude slope (Figure 1b). The spectral content of the MR systolic murmur has faintly higher frequencies than the spectral content of the AS systolic murmur. The closure of aortic valve affects the second heart sound and the closure of the mitral valve affects the first heart sound.

Two heart cycles of AS and MR heart sounds.

It can be concluded by the visual inspection that the AS systolic murmur has very similar characteristics with the MR systolic murmur and therefore the differentiation between these two diseases is a difficult problem in heart sound diagnosis, especially for young inexperienced clinicians. All these facts define the problem of differentiation between the AS and the MR murmurs. In the following sections we propose a method based on time-frequency features and decision tree classifiers for solving this problem.
Diagram of physical findings in a patient with aortic stenosis and mitral regurgitation.

Murmur, character, intensity, and radiation are depicted. Sound of pulmonic closure exceeds that of aortic closure. Left ventricular (LV) thrust and right ventricular (RV) lift (heavy arrows) are identified. A 4th heart sound (S₄) and systolic thrill (Tₛ) are present. a = aortic closure sound; p = pulmonic closure sound; S₁ = 1st heart sound; S₂ = 2nd heart sound; 3/6 = grade of crescendo-diminuendo murmur (radiates to both sides of neck); 2/6 = grade of pansystolic apical crescendo murmur; 1+ = mild precordial lift of RV hypertrophy (arrow shows direction of lift); 2+ = moderate LV thrust (arrow shows direction of thrust).

Systolic heart sounds: Systolic sounds include the following:

- 1st heart sound (S₁)
- Clicks

S₁ and the 2nd heart sound (S₂, a diastolic heart sound) are normal components of the cardiac cycle, the familiar “lub-dub” sounds.

S₁ occurs just after the beginning of systole and is predominantly due to mitral closure but may also include tricuspid closure components. It is often split and has a high pitch. S₁ is loud in mitral stenosis. It may be soft or absent in mitral regurgitation due to valve leaflet sclerosis and rigidity but is often distinctly heard in mitral regurgitation due to myxomatous degeneration of the mitral apparatus or due to ventricular myocardial abnormality (eg, papillary muscle dysfunction, ventricular dilation).

Clicks occur only during systole; they are distinguished from S₁ and S₂ by their higher pitch and briefer duration. Some clicks occur at different times during systole as hemodynamics change. Clicks may be single or multiple.

Clicks in congenital aortic or pulmonic stenosis are thought to result from abnormal ventricular wall tension. These clicks occur early in systole (very near S₁) and are not affected by hemodynamic changes. Similar clicks occur in severe pulmonary hypertension. Clicks in mitral
or tricuspid valve prolapse, typically occurring in mid to late systole, are thought to result from abnormal tension on redundant and elongated chordae tendineae or valve leaflets.

Clicks due to myxomatous degeneration of valves may occur any time during systole but move toward S1 during maneuvers that transiently decrease ventricular filling volume (eg, standing, Valsalva maneuver). If ventricular filling volume is increased (eg, by lying supine), clicks move toward S2, particularly in mitral valve prolapse. For unknown reasons, characteristics of the clicks may vary greatly between examinations, and clicks may come and go.

Diastolic heart sounds: Diastolic sounds include the following:

- 2nd, 3rd, and 4th heart sounds (S2, S3, and S4)
- Diastolic knocks
- Mitral valve sounds

Unlike systolic sounds, diastolic sounds are low-pitched; they are softer in intensity and longer in duration. Except for S2, these sounds are always abnormal in adults.

S2 occurs at the beginning of diastole, due to aortic and pulmonic valve closure. Aortic valve closure normally precedes pulmonic valve closure unless the former is late or the latter is early. Aortic valve closure is late in left bundle branch block or aortic stenosis; pulmonic valve closure is early in some forms of preexcitation phenomena. Delayed pulmonic valve closure may result from increased blood flow through the RV (eg, in atrial septal defect of the common secundum variety) or complete right bundle branch block. Increased RV flow in atrial septal defect also abolishes the normal respiratory variation in aortic and pulmonic valve closure, producing a fixed split S2. Left-to-right shunts with normal RV volume flow (eg, in membranous ventricular septal defects) do not cause fixed splitting. A single S2 may occur when the aortic valve is regurgitant, severely stenotic, or atretic (in truncus arteriosus when there is a common valve).

S3 occurs in early diastole, when the ventricle is dilated and noncompliant. It occurs during passive diastolic ventricular filling and indicates serious ventricular dysfunction in adults; in children, it can be normal. RV S3 is heard best (sometimes only) during inspiration (because negative intrathoracic pressure augments RV filling volume) with the patient supine. LV S3 is best heard during expiration (because the heart is nearer the chest wall) with the patient in the left lateral decubitus position.

S4 is produced by augmented ventricular filling, caused by atrial contraction, near the end of diastole. It is similar to S3 and heard best or only with the bell of the stethoscope. During inspiration, RV S4 increases and LV S4 decreases. S4 is heard much more often than S3 and indicates a lesser degree of ventricular dysfunction, usually diastolic. S4 is absent in atrial fibrillation (because the atria do not contract) but is almost always present in active myocardial ischemia or soon after MI. S3, with or without S4, is usual in significant systolic LV dysfunction; S4 without S3 is usual in diastolic LV dysfunction.
A **summation gallop** occurs when S₃ and S₄ are present in a patient with tachycardia, which shortens diastole so that the 2 sounds merge. Loud S₃ and S₄ may be palpable at the apex with the patient in the left lateral decubitus position.

A **diastolic knock** occurs at the same time as S₃, in early diastole. It is not accompanied by S₄ and is a louder, thudding sound, which indicates abrupt arrest of ventricular filling by a noncompliant, constricting pericardium.

An **opening snap** may occur in early diastole in mitral stenosis or, rarely, in tricuspid stenosis. Mitral opening snap is very high pitched, brief, and heard best with the diaphragm of the stethoscope. The more severe mitral stenosis is (ie, the higher the left atrial pressure), the closer the opening snap is to the pulmonic component of S₂. Intensity is related to the compliance of the valve leaflets: The snap sounds loud when leaflets remain elastic, but it gradually softens and ultimately disappears as sclerosis, fibrosis, and calcification of the valve develop. Mitral opening snap, although sometimes heard at the apex, is often heard best or only at the lower left sternal border.

Etiology of Murmurs by Timing

<table>
<thead>
<tr>
<th>Timing</th>
<th>Associated Disorders</th>
</tr>
</thead>
</table>
| Mid systolic (ejection) | Aortic obstruction (supravalvular stenosis, coarctation of the aorta, aortic stenosis, aortic sclerosis, hypertrophic cardiomyopathy, subvalvular stenosis)
Increased blood flow across the aortic valve (hyperkinetic states, aortic regurgitation)
Dilation of ascending aorta (atheroma, aortitis, aneurysm of aorta)
Pulmonic obstruction (supravalvular pulmonary artery stenosis, pulmonic stenosis, infundibular stenosis)
Increased blood flow across the pulmonic valve (hyperkinetic states, left-to-right shunt from atrial septal defect, ventricular septal defect)
Dilation of pulmonary artery |
| Mid-late systolic | Mitral valve prolapse, papillary muscle dysfunction |
| Holosystolic | Mitral regurgitation, tricuspid regurgitation, ventricular septal defect |
| Early diastolic (regurgitant) | Aortic regurgitation: acquired or congenital valve abnormality (myxomatous or calcific degeneration, rheumatic fever, endocarditis), dilation of valve ring (aortic dissection, annuloaortic ectasia, cystic medial necrosis, or hypertension), widening of commissures (syphilis); congenital bicuspid valve with or without ventricular septal defect
Pulmonic regurgitation: acquired or congenital valve abnormality, dilation of valve ring (pulmonary hypertension, Marfan syndrome), tetralogy of Fallot, ventricular septal defect |
Mid Diastolic

- **Mitral stenosis** (rheumatic fever, congenital stenosis, cor triatriatum)
 - Increased blood flow across nonstenotic mitral valve (mitral regurgitation, ventricular septal defect, patent ductus arteriosus, high-output states, complete heart block)
- **Tricuspid stenosis**
 - Increased blood flow across nonstenotic tricuspid valve (tricuspid regurgitation, atrial septal defect, anomalous pulmonary venous return)
 - Left or right atrial tumors, atrial ball-valve thrombi

Continuous

- Patent ductus arteriosus, coarctation of the pulmonary artery, coronary or intercostal arteriovenous fistula, ruptured aneurysm of sinus of Valsalva, aortic septal defect, cervical venous hum, anomalous left coronary artery, proximal coronary artery stenosis, mammary souffle (venous hum from engorged breast vessels during pregnancy), pulmonary artery branch stenosis, bronchial collateral circulation, small (restrictive) atrial septal defect with mitral stenosis, coronary-cameral fistula, aortic–right ventricular or atrial fistula

Maneuvers That Aid in Diagnosis of Murmurs

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Effect on Blood Flow</th>
<th>Effect on Heart Sounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspiration</td>
<td>Simultaneously increases venous flow into the right heart, decreases venous flow into the left heart</td>
<td>Augments right heart sounds (eg, murmurs of tricuspid stenosis and regurgitation, those of pulmonic stenosis* [immediately] and regurgitation [usually]); reduces left heart sounds</td>
</tr>
<tr>
<td>Valsalva maneuver</td>
<td>Reduces size of left ventricle (LV); decreases venous return to the right heart and subsequently to the left heart</td>
<td>Augments murmur of hypertrophic obstructive cardiomyopathy and mitral valve prolapse, and diastolic murmur of mitral stenosis; reduces murmurs of aortic stenosis, mitral regurgitation, and tricuspid stenosis</td>
</tr>
<tr>
<td>Release of Valsalva maneuver</td>
<td>Increases volume of LV</td>
<td>Augments murmur of aortic stenosis, that of aortic regurgitation (after 4 or 5 beats), and those of pulmonic regurgitation or pulmonic stenosis* (immediately); reduces murmur of tricuspid stenosis</td>
</tr>
<tr>
<td>Isometric handgrip</td>
<td>Increases afterload and peripheral arterial resistance</td>
<td>Reduces murmurs of aortic stenosis and hypertrophic obstructive cardiomyopathy; reduces murmur of mitral valve prolapse or papillary muscle dysfunction; augments murmurs of mitral</td>
</tr>
</tbody>
</table>
Squatting

<table>
<thead>
<tr>
<th>Squatting</th>
<th>Simultaneously decreases venous return to the right heart and increases afterload and peripheral resistance</th>
<th>Augments murmurs of aortic regurgitation, aortic stenosis, mitral valve prolapse, and mitral regurgitation and diastolic murmur of mitral stenosis; reduces murmur of hypertrophic obstructive cardiomyopathy and mitral valve prolapse or papillary muscle dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyl nitrite</td>
<td>Causes intense venodilation, which reduces venous return to the right heart</td>
<td>Augments murmurs of hypertrophic obstructive cardiomyopathy and mitral valve prolapse; reduces murmur of aortic stenosis</td>
</tr>
</tbody>
</table>

*Patient may need to be standing for effect on pulmonic stenosis to be heard.

All patients with heart murmurs are evaluated by chest x-ray and ECG. Most require echocardiography to confirm the diagnosis, determine severity, and track severity over time, usually followed by a cardiac consultation if significant disease is suspected.

Systolic murmurs: Systolic murmurs may be normal or abnormal. They may be early, mid, or late systolic, or holosystolic (pansystolic). Systolic murmurs may be divided into ejection, regurgitant, and shunt murmurs.

Ejection murmurs are due to turbulent forward flow through narrowed or irregular valves or outflow tracts (eg, due to aortic or pulmonic stenosis). They are typically mid systolic and have a crescendo-diminuendo character that usually becomes louder and longer as flow becomes more obstructed. The greater the stenosis and turbulence, the longer the crescendo phase and the shorter the diminuendo phase.

Systolic ejection murmurs may occur without hemodynamically significant outflow tract obstruction and thus do not necessarily indicate a disorder. In normal infants and children, flow is often mildly turbulent, producing soft ejection murmurs. The elderly often have ejection murmurs due to valve and vessel sclerosis.

During pregnancy, many women have soft ejection murmurs at the 2nd intercostal space to the left or right of the sternum. The murmurs occur because a physiologic increase in blood volume and cardiac output increases flow velocity through normal structures. The murmurs may be greatly exaggerated if severe anemia complicates the pregnancy.

Regurgitant murmurs represent retrograde or abnormal flow (eg, due to mitral regurgitation, tricuspid regurgitation, or ventricular septal defects) into chambers that are at lower resistance. They are typically holosystolic and tend to be louder with high-velocity, low-volume regurgitation or shunts and softer with high-volume regurgitation or shunts. Late systolic
murmurs, which may or may not be preceded by a click, are typical of mitral valve prolapse or papillary muscle dysfunction. Various maneuvers are usually required for more accurate diagnosis of timing and type of murmur.

Shunt murmurs may originate at the site of the shunt (eg, patent ductus arteriosus, ventricular septal defects) or result from altered hemodynamics remote from the shunt (eg, pulmonic systolic flow murmur due to an atrial septal defect with left-to-right shunt).

Diastolic murmurs: Diastolic murmurs are always abnormal; most are early or mid diastolic but may be late diastolic (presystolic). Early diastolic murmurs are typically due to aortic or pulmonic regurgitation. Mid diastolic (or early to mid diastolic) murmurs are typically due to mitral or tricuspid stenosis. A late diastolic murmur may be due to rheumatic mitral stenosis in a patient in sinus rhythm.

A mitral or tricuspid murmur due to an atrial tumor or thrombus may be evanescent and may vary with position and from one examination to the next because the position of the intracardiac mass changes.

Continuous murmurs: Continuous murmurs occur throughout the cardiac cycle. They are always abnormal, indicating a constant shunt flow throughout systole and diastole. They may be due to various cardiac defects

Some defects produce a thrill; many are associated with signs of RVH and LVH. As pulmonary artery resistance increases in shunt lesions, the diastolic component gradually decreases. When pulmonary and systemic resistance equalize, the murmur may disappear.

Patent ductus arteriosus murmurs are loudest at the 2nd intercostal space just below the medial end of the left clavicle. Aorticopulmonary window murmurs are central and heard at the 3rd intercostal space level. Murmurs of systemic arteriovenous fistulas are best heard directly over the lesions; those of pulmonic arteriovenous fistulas and pulmonary artery branch stenosis are more diffuse and heard throughout the chest.

During pregnancy, a continuous venous hum from breast vessels (mammary souffle) may be mistaken for a continuous cardiac murmur.

Pericardial friction rub: A pericardial friction rub is caused by movement of inflammatory adhesions between visceral and parietal pericardial layers. It is a high-pitched or squeaking sound; it may be systolic, diastolic and systolic, or triphasic (when atrial contraction accentuates the diastolic component during late diastole). The rub sounds like pieces of leather squeaking as they are rubbed together. Rubs are best heard with the patient leaning forward or on hands and knees with breath held in expiration.

Extremity and Abdominal Examination
The extremities and abdomen are examined for signs of fluid overload, which may occur with heart failure as well as noncardiac disorders (eg, renal, hepatic, lymphatic).

Extremities: In the extremities (primarily the legs), fluid overload is manifest as edema which is swelling of soft tissues due to increased interstitial fluid. Edema may be visible on inspection, but modest amounts of edema in very obese or muscular people may be difficult to recognize visually. Thus, extremities are palpated for presence and degree of pitting (visible and palpable depressions caused by pressure from the examiner's fingers, which displaces the interstitial fluid). The area of edema is examined for extent, symmetry (ie, comparing both extremities), warmth, erythema, and tenderness. With significant fluid overload, edema may also be present over the sacrum, genitals, or both.

Tenderness, erythema, or both, particularly when unilateral, suggests an inflammatory cause (eg, cellulitis or thrombophlebitis). Nonpitting edema is more suggestive of lymphatic or vascular obstruction than fluid overload.

Abdomen: In the abdomen, significant fluid overload manifests as ascites araked ascites causes visible abdominal distention, which is tense and nontender to palpation, with shifting dullness on abdominal percussion and a fluid wave. The liver may be distended and slightly tender, with a hepatojugular reflux present.

References

Self preparation at class:
Listen information;
Work with patients (with cardiac pathology);
Ask about the problems that have not been found in information given.

Self preparation at home:

Compose the plan of your answer;
Answer the questions to the topic;
Do the test given above.

Task. A 59-year-old female with exertional dyspnea and a loud holosystolic murmur at the apex presented with sinus rhythm. However, intermittent atrial fibrillation had been documented on previous occasions. Atrial enlargement was suggested by the ECG, which was otherwise normal.

The mechanism of mitral regurgitation is:

A. Mitral valve prolapse (posterior leaflet).
B. Mitral valve prolapse (both leaflets).
C. Posterior flail mitral leaflet.
D. Ruptured papillary muscle.

The optimal surgical approach in this patient is:

A. Mitral valve replacement.
B. Mitral annuloplasty.
C. Mitral valve repair.
D. Commissurotomy.
Recommended literature:

A. Main:

2. CURRENT Medical Diagnosis and Treatment 2012, Fifty-First Edition (LANGE CURRENT Series) by Stephen McPhee, Maxine Papadakis and Michael W. Rabow (Paperback - Sep 12, 2011)
3. Davidson's Principles and Practice of Medicine: With STUDENT CONSULT Online Access, 21e (Principles & Practice of Medicine (Davidson's)) by Nicki R. Colledge BSc FRCP(Ed), Brian R. Walker BSc MD FRCP(Ed) and Stuart H. Ralston MB ChB MD FRCP FMedSci FRSE (Paperback - Mar 11, 2010)Kumar and Clark's Clinical Medicine, 7e (Kumar, Kumar and Clark's Clinical Medicine) by Parveen J. Kumar (Paperback - Jul 2, 2009)
4. CURRENT Diagnosis and Treatment Emergency Medicine, Seventh Edition (LANGE CURRENT Series) by C. Keith Stone (May 23, 2011)

Answers.

Posterior flail mitral leaflet.
Mitrval valve repair.

The mechanism of mitral regurgitation can be determined by echocardiographic assessment of color Doppler jet direction, leaflet motion, and morphology. Note the excessive motion of the posterior leaflet that swings into the left atrium during systole. The regurgitant jet is deflected away from the diseased leaflet and is directed medially (and anterior). Hyperkinetic left ventricular function and left ventricular enlargement suggests severe regurgitation.

The feasibility of repair depends on the mechanism of regurgitation. The easiest type to repair is a flail or prolapsing posterior leaflet (success rate is in the range of 80% to 90%). Furthermore, each mechanism demands specific surgical techniques for optimal correction. For a flail posterior leaflet the most commonly applied technique is quadrilateral resection of the unsupported leaflet tissue, suture closure of the gap or "sliding plastic" and implantation of an annuloplasty ring.

Methodical recommendations consisted by Kulishov S.K.